Part Number Hot Search : 
AWT6168 ZFFXXX MCH6612 FOD420S ES2842S LXM16 IDT74A OPB844B
Product Description
Full Text Search
 

To Download IRF520NPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IRF520NPBF hexfet ? power mosfet pd - 94818 fifth generation hexfets from international rectifierutilize advanced processing techniques to achieve extremely low on-resistance per silicon area. this benefit, combined with the fast switching speed and ruggedized device design that hexfet power mosfets are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. the to-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. the low thermal resistance and low package cost of the to-220 contribute to its wide acceptance throughout the industry. s d g parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v 9.7 i d @ t c = 100c continuous drain current, v gs @ 10v 6.8 a i dm pulsed drain current  38 p d @t c = 25c power dissipation 48 w linear derating factor 0.32 w/c v gs gate-to-source voltage 20 v e as single pulse avalanche energy  91 mj i ar avalanche current  5.7 a e ar repetitive avalanche energy  4.8 mj dv/dt peak diode recovery dv/dt  5.0 v/ns t j operating junction and -55 to + 175 t stg storage temperature range soldering temperature, for 10 seconds 300 (1.6mm from case ) c mounting torque, 6-32 or m3 srew 10 lbfin (1.1nm) absolute maximum ratings parameter typ. max. units r jc junction-to-case CCC 3.1 r cs case-to-sink, flat, greased surface 0.50 CCC c/w r ja junction-to-ambient CCC 62 thermal resistance v dss = 100v r ds(on) = 0.20 ? i d = 9.7a t o -22 0 ab  advanced process technology  dynamic dv/dt rating  175c operating temperature  fast switching  fully avalanche rated description 11/5/03  lead-free downloaded from: http:///
IRF520NPBF parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) CCC CCC showing the i sm pulsed source current integral reverse (body diode)  CCC CCC p-n junction diode. v sd diode forward voltage CCC CCC 1.3 v t j = 25c, i s = 5.7a, v gs = 0v  t rr reverse recovery time CCC 99 150 ns t j = 25c, i f = 5.7a q rr reverse recoverycharge CCC 390 580 nc di/dt = 100a/s  source-drain ratings and characteristics s d g parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 100 CCC CCC v v gs = 0v, i d = 250a ? v (br)dss / ? t j breakdown voltage temp. coefficient CCC 0.11 CCC v/c reference to 25c, i d = 1ma r ds(on) static drain-to-source on-resistance CCC CCC 0.20 ? v gs = 10v, i d = 5.7a  v gs(th) gate threshold voltage 2.0 CCC 4.0 v v ds = v gs , i d = 250a g fs forward transconductance 2.7 CCC CCC s v ds = 50v, i d = 5.7a CCC CCC 25 a v ds = 100v, v gs = 0v CCC CCC 250 v ds = 80v, v gs = 0v, t j = 150c gate-to-source forward leakage CCC CCC 100 v gs = 20v gate-to-source reverse leakage CCC CCC -100 na v gs = -20v q g total gate charge CCC CCC 25 i d = 5.7a q gs gate-to-source charge CCC CCC 4.8 nc v ds = 80v q gd gate-to-drain ("miller") charge CCC CCC 11 v gs = 10v, see fig. 6 and 13  t d(on) turn-on delay time CCC 4.5 CCC v dd = 50v t r rise time CCC 23 CCC i d = 5.7a t d(off) turn-off delay time CCC 32 CCC r g = 22 ? t f fall time CCC 23 CCC r d = 8.6 ?, see fig. 10  between lead, CCC CCC 6mm (0.25in.)from package and center of die contact c iss input capacitance CCC 330 CCC v gs = 0v c oss output capacitance CCC 92 CCC pf v ds = 25v c rss reverse transfer capacitance CCC 54 CCC ? = 1.0mhz, see fig. 5 nh electrical characteristics @ t j = 25c (unless otherwise specified) l d internal drain inductance l s internal source inductance CCC CCC s d g i gss ns 4.5 7.5 i dss drain-to-source leakage current  repetitive rating; pulse width limited by max. junction temperature. ( see fig. 11 )  i sd 5.7a, di/dt 240a/s, v dd v (br)dss , t j 175c notes:  v dd = 25v, starting t j = 25c, l = 4.7mh r g = 25 ? , i as = 5.7a. (see figure 12)  pulse width 300s; duty cycle 2%. 9.7 38 a downloaded from: http:///
IRF520NPBF fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics 1 10 100 0.1 1 10 100 i , drain-to-source current (a) d v , drain-to-source voltage (v) ds vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 20s pulse width t = 25c c a 4.5v 1 10 100 0.1 1 10 100 4.5v i , drain-to-source current (a) d v , drain-to-source voltage (v) ds vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 20s pulse width t = 175c c a 1 10 100 4567891 0 t = 25c j gs v , gate-to-source voltage (v) d i , drain-to-source current (a) v = 50v 20s pulse width ds t = 175c j a 0.0 0.5 1.0 1.5 2.0 2.5 3.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 j t , junction temperature (c) r , drain-to-source on resistance ds(on) (normalized) v = 10v gs a i = 9.5a d downloaded from: http:///
IRF520NPBF fig 7. typical source-drain diode forward voltage fig 5. typical capacitance vs. drain-to-source voltage fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage 0 100 200 300 400 500 600 1 10 100 c, capacitance (pf) ds v , drain-to-source voltage (v) a v = 0v, f = 1mhz c = c + c , c shorted c = c c = c + c gs iss gs gd ds rss gd oss ds gd c iss c oss c rss 0 4 8 12 16 20 0 5 10 15 20 25 q , total gate charge (nc) g v , gate-to-source voltage (v) gs v = 80v v = 50v v = 20v dsds ds a for test circuit see figure 13 i = 5.7a d 1 10 100 0.4 0.6 0.8 1.0 1.2 1.4 t = 25c j v = 0v gs v , source-to-drain voltage (v) i , reverse drain current (a) sd sd a t = 175c j 0.1 1 10 100 1 10 100 1000 v , drain-to-source voltage (v) ds i , drain current (a) operation in this area limited by r d ds(on) 10s 100s 1ms 10ms a t = 25c t = 175c single pulse cj downloaded from: http:///
IRF520NPBF fig 9. maximum drain current vs. case temperature fig 10a. switching time test circuit v ds 90%10% v gs t d(on) t r t d(off) t f v ds pulse width 1 s duty factor 0.1 % fig 10b. switching time waveforms r d v gs r g d.u.t. 10v fig 11. maximum effective transient thermal impedance, junction-to-case + - v dd 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) 25 50 75 100 125 150 175 0.0 2.0 4.0 6.0 8.0 10.0 t , case temperature ( c) i , drain current (a) c d downloaded from: http:///
IRF520NPBF fig 12a. unclamped inductive test circuit v ds l d.u.t. v dd i as t p 0.01 ? r g + - t p v ds i as v dd v (br)dss 10 v fig 12b. unclamped inductive waveforms d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - fig 13b. gate charge test circuit q g q gs q gd v g charge 10 v fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current 0 40 80 120 160 200 25 50 75 100 125 150 175 j e , single pulse avalanche energy (mj) as a starting t , junction temperature (c) v = 25v i top 2.3a 4.0a bottom 5.7a dd d downloaded from: http:///
IRF520NPBF p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-appliedvoltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - - fig 14. for n-channel hexfets * v gs = 5v for logic level devices peak diode recovery dv/dt test circuit    r g v dd ? dv/dt controlled by r g ? driver same type as d.u.t. ? i sd controlled by duty factor "d" ? d.u.t. - device under test d.u.t circuit layout considerations ? low stray inductance ? ground plane ? low leakage inductance current transformer  * downloaded from: http:///
IRF520NPBF ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 11/03 data and specifications subject to change without notice. lead assignments 1 - gate 2 - drain 3 - source 4 - drain - b - 1.32 (.052) 1.22 (.048) 3x 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 4.69 (.185) 4.20 (.165) 3x 0.93 (.037) 0.69 (.027) 4.06 (.160) 3.55 (.140) 1.15 (.045) min 6.47 (.255) 6.10 (.240) 3.78 (.149) 3.54 (.139) - a - 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) 15.24 (.600) 14.84 (.584) 14.09 (.555) 13.47 (.530) 3x 1.40 (.055) 1.15 (.045) 2.54 (.100) 2x 0.36 (.014) m b a m 4 1 2 3 notes: 1 dimensioning & tolerancing per ansi y14.5m, 1982. 3 outline conforms to jedec outline to-220ab. 2 controlling dimension : inch 4 heatsink & lead measurements do n ot include burrs. hexfet 1- gate 2- drain 3- source 4- drain lead assignments igbts, copack 1- gate 2- collector 3- emitter 4- collector to-220ab package outlinedimensions are shown in millimeters (inches) to-220ab part marking information example: in the assembly line "c" this is an irf1010 lot code 1789 assembled o n ww 19, 1997 part number assembly lot code date code year 7 = 1997 line c week 19 logo rectifier in tern atio nal note: "p" in assembly line position indicates "lead-free" downloaded from: http:///
note: for the most current drawings please refer to the ir website at: http://www.irf.com/package/ downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRF520NPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X